Effects of humidity on calcite block fabrication using calcium hydroxide compact

Noriko Koga, Kanji Tsuru, Ichiro Takahashi, Kunio Ishikawa

研究成果: ジャーナルへの寄稿学術誌査読

17 被引用数 (Scopus)

抄録

Abstract Calcite has attracted attention as an artificial bone replacement material and as a precursor for the fabrication of carbonate apatite, which is also an artificial bone replacement material. In this study, the effect of humidity on calcite block fabrication was investigated using calcium hydroxide (Ca(OH)2) compact. Ca(OH)2 compact and Ca(OH)2 paste compact were exposed to CO2 at room temperature under 0%, 50%, and 100% humidity for two weeks. No carbonation was observed when Ca(OH)2 compact was exposed to CO2 under 0% humidity. In contrast, Ca(OH)2 compact transformed into pure calcite under 100% humidity. Forty percent of the Ca(OH)2 compact transformed into calcite under 50% humidity, while 30% of the Ca(OH)2 paste compact transformed into calcite. Interestingly, the diametral tensile strength of the Ca(OH)2 paste compact was four times higher than that of the Ca(OH)2 compact when both were exposed to CO2 under 100% humidity, despite the paste compact's lower conversion into apatite. After exposure to CO2, SEM observations revealed that in the case of the paste compact, the Ca(OH)2 powder was bridged with a precipitate, whereas in the case of Ca(OH)2 compact, no precipitate was found. Results obtained in this study demonstrated that carbonation of the Ca(OH)2 compact at room temperature was the result of a dissolution-precipitation reaction. Ca(OH)2 powder was dissolved into water to supply the Ca2+, and CO32- was supplied for the calcite precipitation from the interaction of CO2 and water. Excess humidity from the paste compact was the key to the precipitation of the calcite bridge. The presence of the calcite bridge resulted in a higher mechanical strength for the calcite block.

本文言語英語
論文番号10412
ページ(範囲)9482-9487
ページ数6
ジャーナルCeramics International
41
8
DOI
出版ステータス出版済み - 9月 1 2015

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • プロセス化学およびプロセス工学
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Effects of humidity on calcite block fabrication using calcium hydroxide compact」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル