Effects of QCD phase transition on gravitational radiation from two-dimensional collapse and bounce of massive stars

Nobutoshi Yasutake, Kei Kotake, Masa Aki Hashimoto, Shoichi Yamada

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

We perform two-dimensional, magneto-hydrodynamical core-collapse simulations of massive stars accompanying the QCD phase transition. We study how the phase-transition affects the gravitational waveforms near the epoch of core-bounce. As for initial models, we change the strength of rotation and magnetic fields. Particularly, the degree of differential rotation in the iron core (Fe-core) is changed parametrically. As for the microphysics, we adopt a phenomenological equation of state above the saturation density, including two parameters to change the hardness before the transition. We assume the first order phase transition, where the conversion of bulk nuclear matter to a chirally symmetric quark-gluon phase is described by the MIT bag model. Based on these computations, we find that the phase transition can make the maximum amplitudes larger up to ∼10 percents than the ones without the phase transition. On the other hand, when the degree of the differential rotation becomes larger, the maximum amplitudes become smaller up to ∼10 percents owing to the phase transition. We find that even extremely strong magnetic fields ∼1017G in the protoneutron star do not affect these results.

本文言語英語
論文番号084012
ジャーナルPhysical Review D - Particles, Fields, Gravitation and Cosmology
75
8
DOI
出版ステータス出版済み - 4 5 2007

All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学
  • 物理学および天文学(その他)

フィンガープリント

「Effects of QCD phase transition on gravitational radiation from two-dimensional collapse and bounce of massive stars」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル