Efficient reformulation of 1-norm ranking SVM

研究成果: Contribution to journalArticle査読

抄録

Finding linear functions that maximize AUC scores is important in ranking research. A typical approach to the ranking problem is to reduce it to a binary classification problem over a new instance space, consisting of all pairs of positive and negative instances. Specifically, this approach is formulated as hard or soft margin optimization problems over pn pairs of p positive and n negative instances. Solving the optimization problems directly is impractical since we have to deal with a sample of size pn, which is quadratically larger than the original sample size p + n. In this paper, we reformulate the ranking problem as variants of hard and soft margin optimization problems over p+n instances. The resulting classifiers of our methods are guaranteed to have a certain amount of AUC scores.

本文言語英語
ページ(範囲)719-729
ページ数11
ジャーナルIEICE Transactions on Information and Systems
E101D
3
DOI
出版ステータス出版済み - 3 1 2018

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Efficient reformulation of 1-norm ranking SVM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル