TY - JOUR
T1 - Efficient thermal spin injection using CoFeAl nanowire
AU - Hu, Shaojie
AU - Itoh, Hiroyoshi
AU - Kimura, Takashi
N1 - Publisher Copyright:
© 2014 Nature Publishing Group All rights reserved.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Nanoelectronic devices based on electron spin can overcome the physical limitations of the present semiconductor technology because of their low power consumption while exploiting the spin degree of freedom of electrons. Although enhancing the efficiency of generation of the spin current is imperative and a primary issue for the practical application of spin-based electronics, seamless device integration with the conventional complementary metal-oxide semiconductor technology is another important milestone for developing spin-based nanoelectronics. In particular, the preparation of nanosized, magnetic, multilayered structures with electrical connections to individual complementary metal-oxide semiconductor circuits significantly complicates the fabrication procedure of nanoelectronic devices. Thermal spin injection, which is a recently discovered unique characteristic of spin current, may be an innovative method for simplifying device integration without the need for electricity, namely wireless spintronics. However, the feasibility of using the thermal spin injection method is poor because of its extremely low-generation efficiency. Here, we demonstrate that a highly spin-polarized, ferromagnetic CoFeAl electrode with a favorable band structure has excellent properties for thermal spin injection. The spin-dependent Seebeck coefficient is approximately 70 lVK-1, which facilitates highly efficient generation of the spin current from heat. The heat generates approximately 100 times more spin voltage than a conventional ferromagnetic injector at room temperature. This innovative demonstration may open a new route for spin-device integration and its applications.
AB - Nanoelectronic devices based on electron spin can overcome the physical limitations of the present semiconductor technology because of their low power consumption while exploiting the spin degree of freedom of electrons. Although enhancing the efficiency of generation of the spin current is imperative and a primary issue for the practical application of spin-based electronics, seamless device integration with the conventional complementary metal-oxide semiconductor technology is another important milestone for developing spin-based nanoelectronics. In particular, the preparation of nanosized, magnetic, multilayered structures with electrical connections to individual complementary metal-oxide semiconductor circuits significantly complicates the fabrication procedure of nanoelectronic devices. Thermal spin injection, which is a recently discovered unique characteristic of spin current, may be an innovative method for simplifying device integration without the need for electricity, namely wireless spintronics. However, the feasibility of using the thermal spin injection method is poor because of its extremely low-generation efficiency. Here, we demonstrate that a highly spin-polarized, ferromagnetic CoFeAl electrode with a favorable band structure has excellent properties for thermal spin injection. The spin-dependent Seebeck coefficient is approximately 70 lVK-1, which facilitates highly efficient generation of the spin current from heat. The heat generates approximately 100 times more spin voltage than a conventional ferromagnetic injector at room temperature. This innovative demonstration may open a new route for spin-device integration and its applications.
UR - http://www.scopus.com/inward/record.url?scp=84908021624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908021624&partnerID=8YFLogxK
U2 - 10.1038/am.2014.74
DO - 10.1038/am.2014.74
M3 - Article
AN - SCOPUS:84908021624
VL - 6
SP - e127
JO - NPG Asia Materials
JF - NPG Asia Materials
SN - 1884-4049
IS - 9
ER -