Elastic properties of as-solidified Ti-Zr binary alloys for biomedical applications

Takanobu Shiraishi, Kunio Yubuta, Toetsu Shishido, Nobuya Shinozaki

研究成果: Contribution to journalArticle査読

12 被引用数 (Scopus)

抄録

Young's modulus (E), shear modulus (G), bulk modulus (K) and Poisson's ratio (ν) of Ti-Zr binary alloys containing 20, 40, 50, 60, 70 and 80 at% Zr and component pure metals (Ti, Zr) prepared by arc-melting followed by solidification process were determined precisely by ultrasonic sound velocity measurements. X-ray diffraction analysis showed that all the as-solidified alloys and pure metals were with a single-phase structure of the hexagonal close-packed lattice (martensitically formed α'-phase). The alloying addition of Zr to Ti effectively decreased both E and G values with their minimum values of 89.5± 1.0 GPa and 33.3±0.4 GPa, respectively, being recorded at the same composition Ti-60 at% Zr. On the other hand, K values decreased slightly when the concentration of Zr was increased from 20 to nearly 50 at% and further increases in Zr concentration did not change K values greatly. The observed variations of Young's modulus with Zr concentration in the entire range of composition were well interpreted in terms of density (ρ), Debye temperature (θD) and concentration of atoms (n) in each alloy. The quantity ρθD2n-2/3 was revealed to be a good measure in predicting the tendency of variations of Young's modulus with composition in this binary system.

本文言語英語
ページ(範囲)1986-1992
ページ数7
ジャーナルMaterials Transactions
57
12
DOI
出版ステータス出版済み - 2016
外部発表はい

All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Elastic properties of as-solidified Ti-Zr binary alloys for biomedical applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル