Elasticity in drift-wave-zonal-flow turbulence

Z. B. Guo, P. H. Diamond, Y. Kosuga, Ö D. Gürcan

研究成果: Contribution to journalArticle査読

8 被引用数 (Scopus)

抄録

We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.e., the turbulent momentum transport changes from a diffusive process to wavelike propagation. This scenario corresponds to a state very close to the marginal instability of the DW-ZF system, e.g., the Dimits shift regime. The frequency of the ZF wave is ΩZF=±γd1/2γmodu1/2, where γd is the ZF friction coefficient and γmodu is the net ZF growth rate for the case of the Fickian flux-gradient relation. This insight provides a natural framework for understanding temporally periodic ZF structures in the Dimits shift regime and in the transition from low confined mode to high confined mode in confined plasmas.

本文言語英語
論文番号041101
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
89
4
DOI
出版ステータス出版済み - 4 4 2014

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Elasticity in drift-wave-zonal-flow turbulence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル