Elasticity in drift-wave-zonal-flow turbulence

Z. B. Guo, P. H. Diamond, Y. Kosuga, Ö D. Gürcan

研究成果: Contribution to journalArticle査読

8 被引用数 (Scopus)


We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.e., the turbulent momentum transport changes from a diffusive process to wavelike propagation. This scenario corresponds to a state very close to the marginal instability of the DW-ZF system, e.g., the Dimits shift regime. The frequency of the ZF wave is ΩZF=±γd1/2γmodu1/2, where γd is the ZF friction coefficient and γmodu is the net ZF growth rate for the case of the Fickian flux-gradient relation. This insight provides a natural framework for understanding temporally periodic ZF structures in the Dimits shift regime and in the transition from low confined mode to high confined mode in confined plasmas.

ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
出版ステータス出版済み - 4 4 2014

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学


「Elasticity in drift-wave-zonal-flow turbulence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。