Electrochemical Bubble-Based Bidirectional Microfluidic Transport

Hirotaka Obata, Tomoaki Kuji, Kenichi Kojima, Fumihiro Sassa, Masatoshi Yokokawa, Kazuhiro Takekoshi, Hiroaki Suzuki

研究成果: ジャーナルへの寄稿記事

3 引用 (Scopus)


With the aim of application to biochemical analyses, efficient bidirectional microfluidic transport was achieved through the reversible electrochemical production and shrinkage of hydrogen bubbles. A three-electrode system with a platinum black working electrode, a Ag/AgCl reference electrode, and a platinum auxiliary electrode was incorporated into a poly(dimethylsiloxane) structure containing the necessary flow channels and compartments. The influence of the electrode and flow channel structures on the operation of the system was investigated. The production and shrinkage of bubbles was achieved by applying appropriate potentials to the working electrode, which minimized the influence of spontaneous shrinkage resulting from the oxidizing effect of dissolved oxygen. Device performance depended on the structure of the working electrode, meaning that further optimization will be necessary. The device was shown to withdraw solution through a minimally invasive needle and to process liquid plugs in a microfluidic system.

ジャーナルACS Sensors
出版物ステータス出版済み - 2 26 2016

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes

フィンガープリント Electrochemical Bubble-Based Bidirectional Microfluidic Transport' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Obata, H., Kuji, T., Kojima, K., Sassa, F., Yokokawa, M., Takekoshi, K., & Suzuki, H. (2016). Electrochemical Bubble-Based Bidirectional Microfluidic Transport. ACS Sensors, 1(2), 190-196. https://doi.org/10.1021/acssensors.5b00059