Electrochemical extraction of proteins by reverse micelle formation

Mariko Shinshi, Takayasu Sugihara, Toshiyuki Osakai, Masahiro Goto

    研究成果: ジャーナルへの寄稿学術誌査読

    65 被引用数 (Scopus)


    The transfer of proteins by the anionic surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) at a polarized 1,2-dichloroethane/water (DCE/W) interface was investigated by means of ion-transfer voltammetry. When the tetrapentylammonium salt of AOT was added to the DCE phase, the facilitated transfer of certain proteins, including cytochrome c (Cyt c), ribonuclease A, and protamine, could be controlled electrochemically, and a well-defined anodic wave for the transfer was obtained. At low pH values (e.g., pH 3.4), the anodic wave was usually well-separated from the wave for the formation of protein-free (i.e., unfilled) reverse micelles. The anodic wave for the protein transfer was analyzed by applying the theory for facilitated transfer of ions by charged ligands and then supplying information regarding the number of AOT anions reacting with one protein molecule and the total charge carried by the protein transfer. However, controlled-potential electrolyses performed for the transfer of Cyt c, which is red, revealed that the protein-AOT complexes were unstable in DCE and liable to aggregate at the interface when the pH of the W phase was 3.4. At pH 7.0, when formation of unfilled reverse micelles occurred simultaneously, the protein-AOT complexes appeared to be stabilized, probably via fusion with unfilled reverse micelles.

    出版ステータス出版済み - 6月 20 2006

    !!!All Science Journal Classification (ASJC) codes

    • 材料科学(全般)
    • 凝縮系物理学
    • 表面および界面
    • 分光学
    • 電気化学


    「Electrochemical extraction of proteins by reverse micelle formation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。