抄録
The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and angles of incidence. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.
本文言語 | 英語 |
---|---|
論文番号 | P04003 |
ジャーナル | Journal of Instrumentation |
巻 | 6 |
号 | 4 |
DOI | |
出版ステータス | 出版済み - 4月 2011 |
外部発表 | はい |
All Science Journal Classification (ASJC) codes
- 数理物理学
- 器械工学
フィンガープリント
「Electromagnetic response of a highly granular hadronic calorimeter」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。引用スタイル
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Electromagnetic response of a highly granular hadronic calorimeter. / Adloff, C.; Blaha, J.; Blaising, J. J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, T.; Sosebee, M.; White, P.; Yu, J.; Mikami, Y.; Watson, K.; Goto, T.; Mavromanolakis, G.; Thomson, A.; Ward, R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Crloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, C.; Dyshkant, A.; Lima, R.; Zutshi, V.; Hostachy, J. Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A. I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H. Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Uozumi, S.; Ballin, A.; Dauncey, D.; Magnan, A. M.; Yilmaz, S.; Zorba, O.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M. C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, P. H.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Guilhem, G.; Li, H.; Martin-Chassard, G.; Richard, F.; De La Taille, C. H.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J. C.; Jeans, D.; Mora De Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Nishiyama, M.; Takeshita, T.; Tozuka, S.; Buanes, T.; Eigen, G.
In: Journal of Instrumentation, Vol. 6, No. 4, P04003, 04.2011.研究成果: ジャーナルへの寄稿 › 総説 › 査読
}
TY - JOUR
T1 - Electromagnetic response of a highly granular hadronic calorimeter
AU - Adloff, C.
AU - Blaha, J.
AU - Blaising, J. J.
AU - Drancourt, C.
AU - Espargilière, A.
AU - Gaglione, R.
AU - Geffroy, N.
AU - Karyotakis, Y.
AU - Prast, J.
AU - Vouters, G.
AU - Francis, K.
AU - Repond, J.
AU - Smith, J.
AU - Xia, L.
AU - Baldolemar, E.
AU - Li, J.
AU - Park, T.
AU - Sosebee, M.
AU - White, P.
AU - Yu, J.
AU - Mikami, Y.
AU - Watson, K.
AU - Goto, T.
AU - Mavromanolakis, G.
AU - Thomson, A.
AU - Ward, R.
AU - Yan, W.
AU - Benchekroun, D.
AU - Hoummada, A.
AU - Khoulaki, Y.
AU - Benyamna, M.
AU - Crloganu, C.
AU - Fehr, F.
AU - Gay, P.
AU - Manen, S.
AU - Royer, L.
AU - Blazey, C.
AU - Dyshkant, A.
AU - Lima, R.
AU - Zutshi, V.
AU - Hostachy, J. Y.
AU - Morin, L.
AU - Cornett, U.
AU - David, D.
AU - Fabbri, R.
AU - Falley, G.
AU - Gadow, K.
AU - Garutti, E.
AU - Göttlicher, P.
AU - Günter, C.
AU - Karstensen, S.
AU - Krivan, F.
AU - Lucaci-Timoce, A. I.
AU - Lu, S.
AU - Lutz, B.
AU - Marchesini, I.
AU - Meyer, N.
AU - Morozov, S.
AU - Morgunov, V.
AU - Reinecke, M.
AU - Sefkow, F.
AU - Smirnov, P.
AU - Terwort, M.
AU - Vargas-Trevino, A.
AU - Wattimena, N.
AU - Wendt, O.
AU - Feege, N.
AU - Haller, J.
AU - Richter, S.
AU - Samson, J.
AU - Eckert, P.
AU - Kaplan, A.
AU - Schultz-Coulon, H. Ch
AU - Shen, W.
AU - Stamen, R.
AU - Tadday, A.
AU - Bilki, B.
AU - Norbeck, E.
AU - Onel, Y.
AU - Wilson, G. W.
AU - Kawagoe, K.
AU - Uozumi, S.
AU - Ballin, A.
AU - Dauncey, D.
AU - Magnan, A. M.
AU - Yilmaz, S.
AU - Zorba, O.
AU - Bartsch, V.
AU - Postranecky, M.
AU - Warren, M.
AU - Wing, M.
AU - Salvatore, F.
AU - Calvo Alamillo, E.
AU - Fouz, M. C.
AU - Puerta-Pelayo, J.
AU - Balagura, V.
AU - Bobchenko, B.
AU - Chadeeva, M.
AU - Danilov, M.
AU - Epifantsev, A.
AU - Markin, O.
AU - Mizuk, R.
AU - Novikov, E.
AU - Rusinov, V.
AU - Tarkovsky, E.
AU - Kozlov, V.
AU - Soloviev, Y.
AU - Buzhan, P.
AU - Dolgoshein, B.
AU - Ilyin, A.
AU - Kantserov, V.
AU - Kaplin, V.
AU - Karakash, A.
AU - Popova, E.
AU - Smirnov, S.
AU - Frey, A.
AU - Kiesling, C.
AU - Seidel, K.
AU - Simon, F.
AU - Soldner, C.
AU - Weuste, L.
AU - Bonis, J.
AU - Bouquet, B.
AU - Callier, S.
AU - Cornebise, P.
AU - Doublet, P. H.
AU - Dulucq, F.
AU - Faucci Giannelli, M.
AU - Fleury, J.
AU - Guilhem, G.
AU - Li, H.
AU - Martin-Chassard, G.
AU - Richard, F.
AU - De La Taille, C. H.
AU - Pöschl, R.
AU - Raux, L.
AU - Seguin-Moreau, N.
AU - Wicek, F.
AU - Anduze, M.
AU - Boudry, V.
AU - Brient, J. C.
AU - Jeans, D.
AU - Mora De Freitas, P.
AU - Musat, G.
AU - Reinhard, M.
AU - Ruan, M.
AU - Videau, H.
AU - Bulanek, B.
AU - Zacek, J.
AU - Cvach, J.
AU - Gallus, P.
AU - Havranek, M.
AU - Janata, M.
AU - Kvasnicka, J.
AU - Lednicky, D.
AU - Marcisovsky, M.
AU - Polak, I.
AU - Popule, J.
AU - Tomasek, L.
AU - Tomasek, M.
AU - Ruzicka, P.
AU - Sicho, P.
AU - Smolik, J.
AU - Vrba, V.
AU - Zalesak, J.
AU - Belhorma, B.
AU - Ghazlane, H.
AU - Kotera, K.
AU - Nishiyama, M.
AU - Takeshita, T.
AU - Tozuka, S.
AU - Buanes, T.
AU - Eigen, G.
PY - 2011/4
Y1 - 2011/4
N2 - The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and angles of incidence. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.
AB - The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and angles of incidence. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.
UR - http://www.scopus.com/inward/record.url?scp=79955867247&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955867247&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/6/04/P04003
DO - 10.1088/1748-0221/6/04/P04003
M3 - Review article
AN - SCOPUS:79955867247
VL - 6
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 4
M1 - P04003
ER -