Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential

Il Keun Kwon, Satoru Kidoaki, Takehisa Matsuda

研究成果: Contribution to journalArticle査読

503 被引用数 (Scopus)

抄録

Nano- to micro-structured biodegradable poly(l-lactide-co-ε- caprolactone) (PLCL) fabrics were prepared by electrospinning. Electrospun microfiber fabrics with different compositions of PLCL (mol% in feed; 70/30, 50/50, and 30/70), poly(l-lactide) (PLL) and poly(ε-caprolactone) (PCL) were obtained using methylene chloride (MC) as a solvent. The PLL microfiber exhibited a nanoscale-pore structure with a pore diameter of approximately 200-800 nm at the surface and subsurface regions, whereas such a surface structure was hardly observed in other polymers containing CL. The microfiber fabric made of PLCL 50/50 was elastomeric. Nanoscale-fiber fabrics with PLCL 50/50 (approx. 0.3 or 1.2 μm in diameter) were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent. Mercury porosimetry showed that the decrease in the fiber diameter of the fabric decreased porosity, but increased fiber density and mechanical strength. Human umbilical vein endothelial cells (HUVECs) were adhered well and proliferated on the small-diameter-fiber fabrics (0.3 and 1.2 μm in diameter), both of which are dense fabrics, whereas markedly reduced cell adhesion, restricted cell spreading and no signs of proliferation were observed on the large-diameter-fiber fabric (7.0 μm in diameter). The potential biomedical application of electrospun PLCL 50/50 was discussed.

本文言語英語
ページ(範囲)3929-3939
ページ数11
ジャーナルBiomaterials
26
18
DOI
出版ステータス出版済み - 6 2005

All Science Journal Classification (ASJC) codes

  • バイオエンジニアリング
  • セラミックおよび複合材料
  • 生物理学
  • 生体材料
  • 材料力学

フィンガープリント

「Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル