趋于线性标度的增长法:基于局域定域分子轨道的双电子积分

David R. Price, Liang Peng, Shaopeng Li, Fenglong Gu, Yuriko Aoki

研究成果: Contribution to journalArticle査読

抄録

Elongation Hartree-Fock (ELG-HF) achieves linear scaling for large systems when coupled with quantum fast multipole method. However, it is a simpler method to form the Fock matrix directly from localized molecular orbitals, which requires transforming the two electron integrals from an atomic orbital basis to a localized molecular orbital basis. For each elongation step, almost constant scaling is achieved when cutoff is used to exclude atomic orbital two electron integrals that are not required in the transformation. The Schwarz inequality, molecular orbital prescreening and using a set of hybridized molecular orbitals reduce the time required to complete the transformation and eliminate additional atomic orbital two electron integrals. The results for water molecule chain verify that linear scaling for ELG-HF methods is achieved. This new method is more effective than forming the Fock matrix from atomic orbital two electron integrals when the size of the interactive region contains fewer than 120 well localized molecular orbitals.

寄稿の翻訳タイトルElongation toward linear scaling: Two electron integrals in regionally localized molecular orbital basis
本文言語中国語
ページ(範囲)91-102
ページ数12
ジャーナルZhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni
58
1
DOI
出版ステータス出版済み - 1 1 2019

All Science Journal Classification (ASJC) codes

  • General

フィンガープリント 「趋于线性标度的增长法:基于局域定域分子轨道的双电子积分」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル