抄録
We report herein the fabrication of ferritin-embedded self-supporting silica nanofilms via a simple spin-coating process. Ferritin was employed as a template molecule, and solutions of ferritin and silica were spread on a polymercoated silicon substrate, in this order, After dissolving the polymer underlayer by simply immersing ethanol, a centimeter-sized self-supporting nanofilm of ferritin/silica composite with a thickness of 15 nm was successfully transferred onto an alumina membrane without the film breaking. Ozone and hydrochloric acid solution treatment removed the template ferritin molecules from the composite film to produce corresponding transmembrane nanoholes. The reported method is very simple, and the fabrication of a protein-embedded self-supporting nanofilm enables the design of biomembranemimetic devices.
本文言語 | 英語 |
---|---|
ページ(範囲) | 4629-4633 |
ページ数 | 5 |
ジャーナル | Langmuir |
巻 | 23 |
号 | 8 |
DOI | |
出版ステータス | 出版済み - 4 10 2007 |
外部発表 | はい |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry