Emerging concepts in solid-state hydrogen storage: The role of nanomaterials design

Hazel Reardon, James M. Hanlon, Robert W. Hughes, Agata Godula-Jopek, Tapas K. Mandal, Duncan H. Gregory

研究成果: Contribution to journalReview article査読

102 被引用数 (Scopus)

抄録

This perspective highlights the state-of-the-art solid-state hydrogen storage and describes newly emerging routes towards meeting the practical demands required of a solid-state storage system. The article focuses both on the physical and chemical aspects of hydrogen storage. Common to both classes of storage material is the concept of nanostructure design to tailor kinetics and thermodynamics; whether this be control of functionalised porosity or crystalline growth on the nanoscale. In the area of chemical storage, different processing and nanostructuring techniques that have been employed to overcome the barriers of slow kinetics will be discussed in addition to new chemical systems that have emerged. The prospects of porous inorganic solids, coordination polymers (metal organic frameworks; MOFs) and other polymeric matrices for physical storage of hydrogen will be highlighted. Additionally the role of inorganic nanostructures as evolving materials "intermediate" between physical and chemical storage systems will be discussed and their place within the fine thermodynamic balance for optimum hydrogen uptake and release considered.

本文言語英語
ページ(範囲)5951-5979
ページ数29
ジャーナルEnergy and Environmental Science
5
3
DOI
出版ステータス出版済み - 3 1 2012
外部発表はい

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

フィンガープリント 「Emerging concepts in solid-state hydrogen storage: The role of nanomaterials design」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル