Energy-twisted boundary condition and response in one-dimensional quantum many-body systems

Ryota Nakai, Taozhi Guo, Shinsei Ryu

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Thermal transport in condensed matter systems is traditionally formulated as a response to a background gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy to the U(1) twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary condition, and study the response of the system to the boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe ansatz equations.

本文言語英語
論文番号155128
ジャーナルPhysical Review B
106
15
DOI
出版ステータス出版済み - 10月 15 2022

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Energy-twisted boundary condition and response in one-dimensional quantum many-body systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル