Equivariant multiplicities of Coxeter arrangements and invariant bases

Takuro Abe, Hiroaki Terao, Atsushi Wakamiko

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

Let A be an irreducible Coxeter arrangement and W be its Coxeter group. Then W naturally acts on A. A multiplicity m:A→Z is said to be equivariant when m is constant on each W-orbit of A. In this article, we prove that the multi-derivation module D(A,m) is a free module whenever m is equivariant by explicitly constructing a basis, which generalizes the main theorem of Terao (2002). [12]. The main tool is a primitive derivation and its covariant derivative. Moreover, we show that the W-invariant part D(A,m)W for any multiplicity m is a free module over the W-invariant subring.

本文言語英語
ページ(範囲)2364-2377
ページ数14
ジャーナルAdvances in Mathematics
230
4-6
DOI
出版ステータス出版済み - 7 2012
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Equivariant multiplicities of Coxeter arrangements and invariant bases」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル