Estimate of the radius responsible for quasinormal modes in the extreme Kerr limit and asymptotic behavior of the Sasaki-Nakamura transformation

Hiroyuki Nakano, Norichika Sago, Takahiro Tanaka, Takashi Nakamura

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

The Sasaki.Nakamura transformation gives a short-ranged potential and a convergent source term for the master equation of perturbations in the Kerr space-time. In this paper, we study the asymptotic behavior of the transformation, and present a new relaxed necessary and sufficient condition for the transformation to obtain the short-ranged potential in the assumption that the transformation converges in the far distance. Also, we discuss the peak location of the potential which is responsible for quasinormal mode frequencies inWKBanalysis. Finally, in the extreme Kerr limit, a/M → 1, where M and a denote the mass and spin parameter of a Kerr black hole, respectively, we find the peak location of the potential, rp/M ≲ 1 + 1.8 (1 - a/M)1/2, by using the new transformation. The uncertainty of the location is as large as that expected from the equivalence principle.

本文言語英語
論文番号083E01
ジャーナルProgress of Theoretical and Experimental Physics
2016
8
DOI
出版ステータス出版済み - 8 2016

All Science Journal Classification (ASJC) codes

  • 物理学および天文学(全般)

フィンガープリント

「Estimate of the radius responsible for quasinormal modes in the extreme Kerr limit and asymptotic behavior of the Sasaki-Nakamura transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル