Estimation of Precedence Relations to Deal with Regional Complaint Reports

Kohei Yamaguchi, Tsunenori Mine

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

A system in which citizens and the government work together to solve regional issues is known as Government 2.0. To promote this system, the collection of regional issues through mobile crowd sensing and collaborative IoT is being promoted. On the other hand, although prioritization is essential to solve the collected issues, conventional methods only classify the issues and do not identify the precedence relations between the issues. In addition, the latest deep learning models have not been applied to this task. In this study, we apply BERT to the task to identify the priorities of the collected issues based on the safety and security of citizens. We conduct experiments on a data set of regional complaint citizen reports. Experimental results illustrate that the BERT (fine-Tuned approach) outperformed the other baseline methods even in the case of data sets with small vocabulary and biases among priority labels, such as the one in this task.

本文言語英語
ホスト出版物のタイトルProceedings - 2021 IEEE International Conference on Agents, ICA 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7-12
ページ数6
ISBN(電子版)9781665407168
DOI
出版ステータス出版済み - 2021
イベント2021 IEEE International Conference on Agents, ICA 2021 - Virtual, Online, 日本
継続期間: 12月 13 202112月 15 2021

出版物シリーズ

名前Proceedings - 2021 IEEE International Conference on Agents, ICA 2021

会議

会議2021 IEEE International Conference on Agents, ICA 2021
国/地域日本
CityVirtual, Online
Period12/13/2112/15/21

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システムおよび情報管理

フィンガープリント

「Estimation of Precedence Relations to Deal with Regional Complaint Reports」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル