Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR)

Isao Murata, Kiyonobu Yamashita, So Maruyama, Ryuichi Shindo, Nozomu Fujimoto, Yukio Sudo

研究成果: Contribution to journalArticle査読

抄録

In the high temperature gas-cooled reactors (HTGRs), the radial and axial heterogeneity-resulted from a combination of fuel rods, burnable poison rods, block end graphite and so on causes local power peakings which increase the fuel temperature locally. An method was developed for calculating the local power and the fuel temperature distributions. This method deals with all heterogeneity effects of a whole core in the radial and axial directions with a design code system including a vectorized 3-dimensional diffusion code. The uncertainty of the method had been evaluated through the analyses of the power distribution obtained by critical experiments with the Very High Temperature Reactor Critical Assembly (VHTRC). The difference was less than 3% between the calculated and measured power distributions. From the results, it was confirmed that this method could predict the local power distribution of the HTGR with high accuracy. This method was applied to the evaluation of the fuel temperature of the HTTR. It was shown that the maximum fuel temperature would be lower than the design limit of 1,495°C for the normal operation and that of 1,600°C for the anticipated operational transients.

本文言語英語
ページ(範囲)62-72
ページ数11
ジャーナルjournal of nuclear science and technology
31
1
DOI
出版ステータス出版済み - 1 1 1994
外部発表はい

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering

フィンガープリント 「Evaluation of Local Power Distribution with Fine-mesh Core Model for High Temperature Engineering Test Reactor (HTTR)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル