TY - GEN
T1 - Evaluation of the Potential of Foam Producing Microorganism Improving Heterogeneity of Permeability for Novel Microbial Foam EOR
AU - Ito, Miu
AU - Sugai, Yuichi
N1 - Publisher Copyright:
Copyright 2022, Society of Petroleum Engineers.
PY - 2022
Y1 - 2022
N2 - The foam improves heterogeneity of permeability in oil reservoir and contributes to enhancing oil recovery. Both surfactant and gas are alternatingly injected into oil reservoir in foam EOR, therefore, it has several challenges: high cost of surfactant, formation of precipitation with bivalent cations, adsorption of surfactant on reservoir rock, etc. This study proposes the microbial foam EOR which overcomes those challenges by having microorganism generate foam in-situ. We have found an ability of a microorganism belonging to Pseudomonas aeruginosa to generate foam under anaerobic conditions. This study investigated the source materials constructing the foam and capacity of the foam to improve the heterogeneity of the permeability. The challenges of our study are the reproducibility of the foam generation and the foam stability. This study therefore examined the source materials of the foam to understand the mechanisms of the foam generation. We focused on protein, which has been suggested as a possible component of the foam in our previous studies, and examined the relationship between the amount of foam generated by P. aeruginosa and the concentration of protein in its culture solution. As a result, a positive correlation was found between them. This result indicates that the foam generated by P. aeruginosa is composed of the protein produced by the microorganism. Next, the performance of the foam decreasing permeability of high permeability porous media was evaluated through sand pack flooding experiment. P. aeruginosa was injected into a sand pack and cultivated in-situ. The post-flush water was injected into the sand pack after three days' in-situ cultivation to measure the permeability. As a result, the permeability of the sand pack was successfully decreased to half after the cultivation. The permeability of a sand pack in which P. aeruginosa was injected with culture medium and in-situ cultivated was successfully decreased to half of initial. The efflux of bacterial cells of P. aeruginosa was detected after injecting 1.3 pore volumes of postflush water, which shows that the postflush water flowed through areas other than the area where P. aeruginosa grew and produced the foam. These results indicate that the foam produced in-situ by P. aeruginosa is effective for improving the heterogeneity of permeability in oil reservoir. This EOR can be operated at low cost without expensive chemicals. Because the foam produced by P. aeruginosa is induced by proteins, the precipitation will not be formed in oil reservoir. The stability of protein-induced foam is higher than that of surfactant-induced foam in the presence of oil or high saline conditions. The microbial foam EOR therefore has high potential improving the heterogeneity of permeability in oil reservoir more effectively than the conventional foam EOR.
AB - The foam improves heterogeneity of permeability in oil reservoir and contributes to enhancing oil recovery. Both surfactant and gas are alternatingly injected into oil reservoir in foam EOR, therefore, it has several challenges: high cost of surfactant, formation of precipitation with bivalent cations, adsorption of surfactant on reservoir rock, etc. This study proposes the microbial foam EOR which overcomes those challenges by having microorganism generate foam in-situ. We have found an ability of a microorganism belonging to Pseudomonas aeruginosa to generate foam under anaerobic conditions. This study investigated the source materials constructing the foam and capacity of the foam to improve the heterogeneity of the permeability. The challenges of our study are the reproducibility of the foam generation and the foam stability. This study therefore examined the source materials of the foam to understand the mechanisms of the foam generation. We focused on protein, which has been suggested as a possible component of the foam in our previous studies, and examined the relationship between the amount of foam generated by P. aeruginosa and the concentration of protein in its culture solution. As a result, a positive correlation was found between them. This result indicates that the foam generated by P. aeruginosa is composed of the protein produced by the microorganism. Next, the performance of the foam decreasing permeability of high permeability porous media was evaluated through sand pack flooding experiment. P. aeruginosa was injected into a sand pack and cultivated in-situ. The post-flush water was injected into the sand pack after three days' in-situ cultivation to measure the permeability. As a result, the permeability of the sand pack was successfully decreased to half after the cultivation. The permeability of a sand pack in which P. aeruginosa was injected with culture medium and in-situ cultivated was successfully decreased to half of initial. The efflux of bacterial cells of P. aeruginosa was detected after injecting 1.3 pore volumes of postflush water, which shows that the postflush water flowed through areas other than the area where P. aeruginosa grew and produced the foam. These results indicate that the foam produced in-situ by P. aeruginosa is effective for improving the heterogeneity of permeability in oil reservoir. This EOR can be operated at low cost without expensive chemicals. Because the foam produced by P. aeruginosa is induced by proteins, the precipitation will not be formed in oil reservoir. The stability of protein-induced foam is higher than that of surfactant-induced foam in the presence of oil or high saline conditions. The microbial foam EOR therefore has high potential improving the heterogeneity of permeability in oil reservoir more effectively than the conventional foam EOR.
UR - http://www.scopus.com/inward/record.url?scp=85140913899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140913899&partnerID=8YFLogxK
U2 - 10.2118/210696-MS
DO - 10.2118/210696-MS
M3 - Conference contribution
AN - SCOPUS:85140913899
T3 - Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2022, APOG 2022
BT - Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2022, APOG 2022
PB - Society of Petroleum Engineers
T2 - 2022 SPE Asia Pacific Oil and Gas Conference and Exhibition, APOG 2022
Y2 - 17 October 2022 through 19 October 2022
ER -