Evolution of an elliptical flow in weakly nonlinear regime

Yuji Hattori, Yasuhide Fukumoto, Kaoru Fujimura

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

We study the nonlinear evolution of an elliptical flow by weakly nonlinear analysis. Two sets of amplitude equations are derived for different situations. First, the weakly nonlinear evolution of helical modes is considered. Nonlinear selfinteraction of the two base Kelvin waves results in cubic nonlinear terms, which causes saturation of the elliptical instability. Next, the case of triad interaction is considered. Three Kelvin waves, one of which is a helical mode, form a resonant triad thanks to freedom of wavenumber shift. As a result three-wave equations augmented with linear terms are obtained as amplitude equations. They explain the numerical results on the secondary instability obtained by Kerswell (1999).

本文言語英語
ホスト出版物のタイトルIUTAM Symposium on Computational Physics and New Perspectives in Turbulence - Proceedings of the IUTAM Symposium on Computational Physics and New Perspectives in Turbulence
ページ433-438
ページ数6
DOI
出版ステータス出版済み - 12 1 2008
イベントIUTAM Symposium on Computational Physics and New Perspectives in Turbulence - Nagoya, 日本
継続期間: 9 11 20069 14 2006

出版物シリーズ

名前Solid Mechanics and its Applications
4
ISSN(印刷版)1875-3507

その他

その他IUTAM Symposium on Computational Physics and New Perspectives in Turbulence
国/地域日本
CityNagoya
Period9/11/069/14/06

All Science Journal Classification (ASJC) codes

  • 土木構造工学
  • 自動車工学
  • 航空宇宙工学
  • 音響学および超音波学
  • 機械工学

フィンガープリント

「Evolution of an elliptical flow in weakly nonlinear regime」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル