TY - JOUR
T1 - Evolution of field-aligned current in the meridional plane during substorm
T2 - multipoint observations from satellites and ground stations
AU - Imajo, Shun
AU - Nosé, Masahito
AU - Aida, Mari
AU - Higashio, Nana
AU - Matsumoto, Haruhisa
AU - Kiyokazu, Koga
AU - Smith, Charles
AU - MacDowall, Robert J.
AU - Yoshikawa, Akimasa
N1 - Funding Information:
This study was supported in part by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (17J00472). MN is supported by JSPS, Grant-in-Aid for Scientific Research (B) (16H04057) and Specially Promoted Research (16H06286) and by Ito Kagaku Shinkou Kai. K. H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We report the propagation of substorm-associated magnetic fluctuations by multipoint magnetic observations from ground and space in the same meridional plane. The first Quasi-Zenith Satellite (QZS-1), which has a unique orbit of quasi-zenith orbit with an inclination of 41 ∘, an apogee of 7.1 RE radial distance, and an orbital period of 24 h, can stay for a long time in the near-earth magnetotail away from the magnetic equator. We examined a substorm event during 15:00–16:00 UT on July 09, 2013 when QZS-1 was located at 31 ∘ dipole latitude and 23.5 h dipole magnetic local time. The Engineering Test Satellite VIII (ETS-VIII), Time History of Events and Macroscale Interactions during Substorms D (THEMIS-D) at a radial distance of ∼ 10 RE, and THEMIS-E at a radial distance of ∼ 7 RE were located near the equator in the similar magnetic meridian. The dipolarization was first observed at THEMIS-D at 15:14:30 UT. Then, ∼ 1 min later, magnetic fluctuations were observed by ETS-VIII and THEMIS-E. At the same time, the magnetic bay and Pi2 pulsation were observed at low-latitude magnetic observatories and the Radiation Belt Storm Probes B satellite in the inner magnetosphere. We found that QZS-1 away from the equator observed a strong azimuthal magnetic field fluctuation with a long delay of 15 min from the first dipolarization at THEMIS-D near the equator. The speed of the poleward propagating magnetic fluctuation between the ionospheric footprints is calculated to be 310 [m / s] , which is consistent with a typical speed of auroral poleward expansion. A similar time delay of the onset of the negative bay was observed between the Tixie (AACGM MLAT = 66. 8 ∘) and Kotelny (AACGM MLAT = 71. 0 ∘) observatories near the ionospheric footprint of satellites. We suggest that the long delay time of the magnetic fluctuation at QZS-1 was associated with the crossing of field-aligned current during the poleward expansion of the substorm current system. The distribution of azimuthal magnetic field variations in the magnetosphere indicates that the east side downward current extended more west side in the higher latitude part of the current wedge.
AB - We report the propagation of substorm-associated magnetic fluctuations by multipoint magnetic observations from ground and space in the same meridional plane. The first Quasi-Zenith Satellite (QZS-1), which has a unique orbit of quasi-zenith orbit with an inclination of 41 ∘, an apogee of 7.1 RE radial distance, and an orbital period of 24 h, can stay for a long time in the near-earth magnetotail away from the magnetic equator. We examined a substorm event during 15:00–16:00 UT on July 09, 2013 when QZS-1 was located at 31 ∘ dipole latitude and 23.5 h dipole magnetic local time. The Engineering Test Satellite VIII (ETS-VIII), Time History of Events and Macroscale Interactions during Substorms D (THEMIS-D) at a radial distance of ∼ 10 RE, and THEMIS-E at a radial distance of ∼ 7 RE were located near the equator in the similar magnetic meridian. The dipolarization was first observed at THEMIS-D at 15:14:30 UT. Then, ∼ 1 min later, magnetic fluctuations were observed by ETS-VIII and THEMIS-E. At the same time, the magnetic bay and Pi2 pulsation were observed at low-latitude magnetic observatories and the Radiation Belt Storm Probes B satellite in the inner magnetosphere. We found that QZS-1 away from the equator observed a strong azimuthal magnetic field fluctuation with a long delay of 15 min from the first dipolarization at THEMIS-D near the equator. The speed of the poleward propagating magnetic fluctuation between the ionospheric footprints is calculated to be 310 [m / s] , which is consistent with a typical speed of auroral poleward expansion. A similar time delay of the onset of the negative bay was observed between the Tixie (AACGM MLAT = 66. 8 ∘) and Kotelny (AACGM MLAT = 71. 0 ∘) observatories near the ionospheric footprint of satellites. We suggest that the long delay time of the magnetic fluctuation at QZS-1 was associated with the crossing of field-aligned current during the poleward expansion of the substorm current system. The distribution of azimuthal magnetic field variations in the magnetosphere indicates that the east side downward current extended more west side in the higher latitude part of the current wedge.
UR - http://www.scopus.com/inward/record.url?scp=85084364340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084364340&partnerID=8YFLogxK
U2 - 10.1186/s40623-020-01182-6
DO - 10.1186/s40623-020-01182-6
M3 - Letter
AN - SCOPUS:85084364340
VL - 72
JO - Earth, Planets and Space
JF - Earth, Planets and Space
SN - 1343-8832
IS - 1
M1 - 58
ER -