Evolving color recipes

Eiji Mizutani, Hideyuki Takagi, David M. Auslander, Jyh Shing Roger Jang

研究成果: Contribution to journalArticle査読

16 被引用数 (Scopus)


This paper highlights an evolutionary computing intelligence for a computerized color recipe prediction that requires function approximation and combinatorial solution of colorants to produce color recipes for a given target color sample. We attack this real challenging problem in the color (paint) industry by using an evolutionary computing system that consists of a problem-specific knowledge and three principal constituents of soft-computing: neural networks, a fuzzy system, and a genetic algorithm. Departing from the recipe results obtained by neural networks (NN) approaches, the evolutionary system attempts to improve them in conjunction with fuzzy classification, a knowledge base and neural fitness functions. All components function synergistically in obtaining precise color recipe outputs through simulation of color paint manufacturing process. Such computational intelligence can be useful, especially when an exact mathematical model of the real-world process under consideration is not available explicitly.

ジャーナルIEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
出版ステータス出版済み - 11 2000

All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • ソフトウェア
  • 情報システム
  • 人間とコンピュータの相互作用
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学


「Evolving color recipes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。