Exact non-classical symmetry solutions of Arrhenius reaction-diffusion

P. Broadbridge, B. H. Bradshaw-Hajek, D. Triadis

研究成果: Contribution to journalArticle査読

10 被引用数 (Scopus)


Exact solutions for nonlinear Arrhenius reaction- diffusion are constructed in n-dimensions. A single relationship between nonlinear diffusivity and the nonlinear reaction term leads to a non-classical Lie symmetry whose invariant solutions have a heat flux that is exponential in time (either growth or decay), and satisfying a linear Helmholtz equation in space. This construction also extends to heterogeneous diffusion wherein the nonlinear diffusivity factorizes to the product of a function of temperature and a function of position. Example solutions are given with applications to heat conduction in conjunction with either exothermic or endothermic reactions, and to soil-water flow in conjunction with water extraction by a web of plant roots.

ジャーナルProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
出版ステータス出版済み - 12 8 2015

All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 工学(全般)
  • 物理学および天文学(全般)


「Exact non-classical symmetry solutions of Arrhenius reaction-diffusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。