Exact stability analysis of 2-D systems using LMIs

Yoshio Ebihara, Yoshimichi Ito, Tomomichi Hagiwara

研究成果: Contribution to journalConference article

9 引用 (Scopus)

抜粋

In this paper, we propose necessary and sufficient conditions for asymptotic stability analysis of 2-D systems in terms linear matrix inequalities (LMIs). By introducing a guardian map for the set of Schur stable complex matrices, we first reduce the stability analysis problems into nonsingularity analysis problems of parameter-dependent complex matrices. Then, by means of the discrete-time positive real lemma and the generalized S-procedure, we derive LMI-based conditions to verify the asymptotic stability in an exact (i.e., nonconservative) fashion. It turns out that we can reduce the size of LMIs by employing the generalized S-procedure.

元の言語英語
記事番号TuC10.2
ページ(範囲)1270-1271
ページ数2
ジャーナルProceedings of the IEEE Conference on Decision and Control
2
DOI
出版物ステータス出版済み - 1 1 2004
イベント2004 43rd IEEE Conference on Decision and Control (CDC) - Nassau, バハマ
継続期間: 12 14 200412 17 2004

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Modelling and Simulation
  • Control and Optimization

フィンガープリント Exact stability analysis of 2-D systems using LMIs' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用