Examination of the role of the O 14 (α,p) F 17 reaction rate in type-I x-ray bursts

J. Hu, J. J. He, A. Parikh, S. W. Xu, H. Yamaguchi, D. Kahl, P. Ma, J. Su, H. W. Wang, T. Nakao, Y. Wakabayashi, T. Teranishi, K. I. Hahn, J. Y. Moon, H. S. Jung, T. Hashimoto, A. A. Chen, D. Irvine, C. S. Lee, S. Kubono

研究成果: ジャーナルへの寄稿学術誌査読

18 被引用数 (Scopus)

抄録

The O14(α,p)F17 reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type-I x-ray bursts (XRBs). The resonant properties in the compound nucleus Ne18 have been investigated through resonant elastic scattering of F17+p. The radioactive F17 beam was separated by the Center for Nuclear Study radioactive ion beam separator (CRIB) and bombarded a thick H2 gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ΔE-E silicon telescopes at laboratory angles of θlab≈3 10 and 18 Five resonances at Ex=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an R-matrix analysis. In particular, Jπ=1- was firmly assigned to the 6.15-MeV state which dominates the thermonuclear O14(α,p)F17 rate below 2 GK. As well, a possible new excited state in Ne18 was observed at Ex=6.85±0.11 MeV with tentative J=0 assignment. This state could be the analog state of the 6.880 MeV (0-) level in the mirror nucleus O18, or a bandhead state (0+) of the six-particle four-hole (6p-4h) band. A new thermonuclear O14(α,p)F17 rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only a modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.

本文言語英語
論文番号025803
ジャーナルPhysical Review C - Nuclear Physics
90
2
DOI
出版ステータス出版済み - 8月 12 2014

!!!All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学

フィンガープリント

「Examination of the role of the O 14 (α,p) F 17 reaction rate in type-I x-ray bursts」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル