Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation

Satoshi Masaki, Jun ichi Segata

研究成果: Contribution to journalArticle査読

9 被引用数 (Scopus)

抄録

In this article, we prove the existence of a non-scattering solution, which is minimal in some sense, to the mass-subcritical generalized Korteweg–de Vries (gKdV) equation in the scale critical Lˆr space where Lˆr={f∈S(R)|‖f‖r=‖fˆ‖Lr<∞}. We construct this solution by a concentration compactness argument. Then, key ingredients are a linear profile decomposition result adopted to Lˆr-framework and approximation of solutions to the gKdV equation which involves rapid linear oscillation by means of solutions to the nonlinear Schrödinger equation.

本文言語英語
ページ(範囲)283-326
ページ数44
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
35
2
DOI
出版ステータス出版済み - 3 2018
外部発表はい

All Science Journal Classification (ASJC) codes

  • Analysis
  • Mathematical Physics
  • Applied Mathematics

フィンガープリント 「Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル