Experimental Study of a Thermoelectric Air Duct Dehumidification System for Tropical Climate

Kashif Irshad, Abdulmohsen Almalawi, Khairul Habib, Md Hasan Zahir, Amjad Ali, Saiful Islam, Bidyut Baran Saha

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)


Water scarcity is the biggest survival challenge for the current generation, and atmospheric water condensation can be a solution. This paper presents the results of a numerical and experimental evaluation of a novel thermoelectric air duct dehumidifier system (TE-ADD) installed on a test chamber. The subject system, made of twenty-four thermoelectric modules along with heat sinks and fans, was used to produce freshwater by extracting moisture from ambient air. The performance of the system was evaluated as a function of the input power and the airflow rate. The results show that the water condensate production increases and the optimal value is achieved for an input power to the TE-ADD system of 6 A at 5 V. A further increase of the input power adversely affects the performance of the system. The condensate production also depends on the flow rate of the air. The optimal flow rate of air at an input current of 5 A and 6 A is 0.011 kg/s. Thus, this system solves two critical environmental issues, i.e., decrease of the thermal load and freshwater production, simultaneously.

ジャーナルHeat Transfer Engineering
出版ステータス出版済み - 2021

All Science Journal Classification (ASJC) codes

  • 凝縮系物理学
  • 機械工学
  • 流体および伝熱


「Experimental Study of a Thermoelectric Air Duct Dehumidification System for Tropical Climate」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。