背景モデル低コスト化のためのヒストグラムの指数加重更新法

峰松 翼, 五十嵐 正樹, 島田 敬士, 長原 一, 谷口 倫一郎

研究成果: Contribution to journalArticle査読

抄録

In this paper, we propose a background model by using an exponentially weighted updating method. We realize to reduce memory usage for construction of background model. Our background model is represented as a histogram according to pixel values. Our model uses an exponential increasing weight for updating our model. In our model, recently observed pixels have a bigger influence on the background model than older ones. Therefore, our model gradually ignores the effect of old-observed value on a background model without retaining past pixel values. We apply our method to background subtraction for comparing with conventional methods using kernel density estimation. In experiments, we confirmed that the detection accuracy of our background model is comparable to that of conventional methods.
寄稿の翻訳タイトルExponentially Weighted Update of Histogram for Background Modeling Reducing Memory Usage
本文言語日本語
ページ(範囲)191-200
ページ数10
ジャーナルJournal of the Institute of Image Electronics Engineers of Japan
45
2
DOI
出版ステータス出版済み - 2016

フィンガープリント

「背景モデル低コスト化のためのヒストグラムの指数加重更新法」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル