TY - JOUR
T1 - Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart
AU - Kan-o, Meikun
AU - Takeya, Ryu
AU - Taniguchi, Kenichiro
AU - Tanoue, Yoshihisa
AU - Tominaga, Ryuji
AU - Sumimoto, Hideki
N1 - Funding Information:
We thank Dr. Masaya Oki (Kyusyu University) for advice on analysis of embryonic mice; Dr. Jeffery Robbins (Cincinnati Children's Hospital Medical Center) for providing α-MHC promoter; Masato Tanaka (Kyushu University) for generation of transgenic mice; Masafumi Sasaki (Kyushu University) and Ryo Ugawa (Kyushu University) for immuno-electron microscopic analysis; Yohko Kage (Kyushu University), Natsuko Morinaga (Kyushu University), and Namiko Kubo (Kyushu University) for technical assistance; and Minako Nishino (Kyushu University) for secretarial assistance. We also appreciate the technical support from Research Support Center, Kyushu University Graduate School of Medical Sciences, and from the Laboratory for Technical Support, Medical Institute of Bioregulation, Kyushu University.
PY - 2012
Y1 - 2012
N2 - The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.
AB - The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.
UR - http://www.scopus.com/inward/record.url?scp=84859611356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859611356&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0034765
DO - 10.1371/journal.pone.0034765
M3 - Article
C2 - 22509354
AN - SCOPUS:84859611356
SN - 1932-6203
VL - 7
JO - PLoS One
JF - PLoS One
IS - 4
M1 - e34765
ER -