Extremely high thermal resistive poly(p -phenylene benzobisoxazole) with desired shape and form from a newly synthesized soluble precursor

Takahiro Fukumaru, Tsuyohiko Fujigaya, Naotoshi Nakashima

研究成果: Contribution to journalArticle査読

39 被引用数 (Scopus)

抄録

The poly(p-phenylene benzobisoxazole) (PPBO) fiber, known as Zylon, has a very high thermal stability as well as mechanical strength when compared to any other polymers due to its ladder-like rigid structure. However, one of the critical drawbacks of its stiff structure is its insolubility in organic solvents, and only strong acids can be used use for fiber spinning of this polymer. To overcome the poor processability caused by this insolubility in organic solvents, a soluble PPBO precursor was designed and synthesized by the reaction of tert-butyldimethylsilyl (TBS) group-functionalized 4,6-diaminoresoisinol with terephthaloyl chloride for polycondensation. The obtained TBS-functionalized PPBO precursor (TBS-prePBO) shows an excellent solubility in common organic solvents, such as N-methylpyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide (DMSO). Transparent TBS-prePBO films made by the solution-cast method provided PPBO films after thermal treatment at 500°C for 1 h. The structure of the obtained PPBO films was characterized by IR and XRD techniques and found that the films exhibited extremely high thermal stabilities, namely, the synthesized PPBO polymer decomposition temperature reached 670°C in flowing N 2, which is the highest temperature among the organic polymers reported so far.

本文言語英語
ページ(範囲)4247-4253
ページ数7
ジャーナルMacromolecules
45
10
DOI
出版ステータス出版済み - 5 22 2012

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

フィンガープリント 「Extremely high thermal resistive poly(p -phenylene benzobisoxazole) with desired shape and form from a newly synthesized soluble precursor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル