Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle

Akinori Goto, Hung Chi Yen, Yasutaka Anraku, Shigeto Fukushima, Ping Shan Lai, Masaru Kato, Akihiro Kishimura, Kazunori Kataoka

研究成果: Contribution to journalArticle査読

5 被引用数 (Scopus)

抄録

Polyion complex vesicles (PICsomes) are polymeric hollow capsules composed of a unique semipermeable membrane, which may represent a versatile platform for constructing drug-loaded nanoformulation. However, it is difficult to retain water-soluble low-molecular-weight compounds (LMWCs) in the inner space of PICsome because of the high permeability of PIC membrane for LMWCs. Herein, we selected mesoporous silica nanoparticle (MSN) as a drug-retaining nanomatrix, and we demonstrated successful encapsulation of MSN into the PICsome to obtain MSN@PICsome. The efficacy of MSN loading, a ratio of the amount of MSN encapsulated in the PICsome to the amount of feed MSN, was at most 83%, and the diameter of resulting product was approximately 100 nm. The obtained MSN@PICsome was stably dispersed under the physiological condition, and showed considerable longevity in blood circulation of mice. Furthermore, the surface of MSN in MSN@PICsome can be modified without any deterioration of the vesicle structure, obtaining amino-functionalized and sulfonate-functionalized MSN@PICsomes (A-MSN@PICsome and S-MSN@PICsome, respectively). Both surface-modified MSN@PICsomes were successfully loaded with charged water-soluble low-molecular-weight compounds (LMWCs). Particularly, S-MSN@PICsome kept 8 wt % gemcitabine (GEM) per S-MSN, and released it in a sustained manner. GEM-loaded S-MSN@PICsome demonstrated marked cytotoxicity against cultured tumor cells, and achieved significant in vivo efficacy to suppress the growth of subcutaneously implanted lung tumor via intravenous administration.

本文言語英語
ページ(範囲)807-815
ページ数9
ジャーナルACS Biomaterials Science and Engineering
3
5
DOI
出版ステータス出版済み - 5 8 2017

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

フィンガープリント 「Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル