False-name-proof facility location on discrete structures

Taiki Todo, Nodoka Okada, Makoto Yokoo

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

3 被引用数 (Scopus)

抄録

We consider the problem of locating a single facility on a vertex in a given graph based on agents' preferences, where the domain of the preferences is either single-peaked or single-dipped, depending on whether they want to access the facility (a public good) or be far from it (a public bad). Our main interest is the existence of deterministic social choice functions that are Pareto efficient and false-name-proof, i.e., resistant to fake votes. We show that regardless of whether preferences are single-peaked or single-dipped, such a social choice function exists (i) for any tree graph, and (ii) for a cycle graph if and only if its length is less than six. We also show that when the preferences are single-peaked, such a social choice function exists for any ladder (i.e., 2 × m grid) graph, and does not exist for any larger (hyper)grid.

本文言語英語
ホスト出版物のタイトルECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings
編集者Giuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano, Senen Barro, Alberto Bugarin, Jerome Lang
出版社IOS Press BV
ページ227-234
ページ数8
ISBN(電子版)9781643681009
DOI
出版ステータス出版済み - 8月 24 2020
イベント24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Santiago de Compostela, Online, スペイン
継続期間: 8月 29 20209月 8 2020

出版物シリーズ

名前Frontiers in Artificial Intelligence and Applications
325
ISSN(印刷版)0922-6389

会議

会議24th European Conference on Artificial Intelligence, ECAI 2020, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020
国/地域スペイン
CitySantiago de Compostela, Online
Period8/29/209/8/20

!!!All Science Journal Classification (ASJC) codes

  • 人工知能

フィンガープリント

「False-name-proof facility location on discrete structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル