Fast frontal view gait authentication based on the statistical registration and human gait modeling

Kosuke Okusa, Toshinari Kamakura

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

2 被引用数 (Scopus)

抄録

We study the problem of analyzing and classifying frontal view gait video data. In this study, we suppose that frontal view gait data as a mixing of scale changing, human movements and speed changing parameters. We estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we conducted experiment, assessing the proposed method for frontal view human gait authentication. We apply K-nearestneighbor classifier, using the estimated parameters, to perform the human gait authentication, and present results from an experiment involving 120 subjects. As a result, our method shows high recognition rate and low calculation cost.

本文言語英語
ホスト出版物のタイトルProceedings of the World Congress on Engineering 2013, WCE 2013
ページ274-279
ページ数6
出版ステータス出版済み - 11 25 2013
外部発表はい
イベント2013 World Congress on Engineering, WCE 2013 - London, 英国
継続期間: 7 3 20137 5 2013

出版物シリーズ

名前Lecture Notes in Engineering and Computer Science
1 LNECS
ISSN(印刷版)2078-0958

その他

その他2013 World Congress on Engineering, WCE 2013
国/地域英国
CityLondon
Period7/3/137/5/13

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンス(その他)

フィンガープリント

「Fast frontal view gait authentication based on the statistical registration and human gait modeling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル