Fatigue crack-growth retardation after overloading in gaseous hydrogen: Revisiting the effect of hydrogen on crack-tip plastic-zone development

研究成果: Contribution to journalArticle査読

抄録

The impact of hydrogen on crack-tip plastic-zone development was revisited via a novel approach, utilizing the measurement of fatigue crack-growth retardation in a medium-strength martensitic steel after a single overloading in laboratory air and in 90-MPa-hydrogen gas. The plastic zone can be characterized according to the crack-propagation length for reverting from the retardation caused by plasticity-induced crack-closure ascribed to overloading (overloading-affected, crack-growth distance). Hydrogen sharpened the shape of overloaded crack-tip and suppressed the extension of the severely-deformed zone in the crack proximity. Besides, it enhanced frequent crack-tip branching, giving rise to a slower crack growth rate than the in-air situation at the initial stage of retardation. However, no change in the overloading-affected, crack-growth distance was detected between the in-air and hydrogen-gas conditions. Ultimately, hydrogen barely altered the overall plastic-zone size.

本文言語英語
論文番号131115
ジャーナルMaterials Letters
308
DOI
出版ステータス出版済み - 2 1 2022

All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Fatigue crack-growth retardation after overloading in gaseous hydrogen: Revisiting the effect of hydrogen on crack-tip plastic-zone development」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル