Favorable conditions for cold-water intrusion from the Kuroshio intermediate layer into Osaka Bay

Koichi Sugimatsu, Atsuhiko Isobe

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

From 1980 to 1995, in August, the bottom layer of Osaka Bay was occupied by cold, nutrient-rich water compared with that observed during both previous and subsequent decades. To investigate the mechanisms for the intrusion of bottom-layer cold water into Osaka Bay, the intrusion into Osaka Bay via the Kii Channel is simulated using a finite-volume coastal ocean model with unstructured triangular cell grids. The initial conditions, boundary conditions, and surface temperature given to the model are obtained from daily reanalysis data provided by the Japan Coastal Ocean Predictability Experiment. The model shows that cold water uplifted on the eastern side of the Kii Peninsula is propagated westward at 1.0 m/s as a coastal boundary current; it reaches the Kii Channel mouth when the Kuroshio axis is located around 74 km south of Cape Shionomisaki. However, the modeled cold water mass at the Kii Channel mouth does not intrude further to the north of the Kii Channel; therefore, another mechanism is required to explain the cold-water intrusion into the bottom layer of Osaka Bay. A plausible explanation is the estuarine circulation established by the freshwater supply at the bay head. When the river runoff is included in the model without forced vertical mixing, the temperature in Osaka Bay decreases 6.6 days later than the temperature decreases at the Kii Channel mouth. Furthermore, the shoreward current speed in the bottom layer of the modeled estuarine circulation is 15 cm/s, which provides the mechanism required for the cold water mass to pass the Kii Channel.

本文言語英語
ページ(範囲)149-158
ページ数10
ジャーナルJournal of Oceanography
67
2
DOI
出版ステータス出版済み - 4 1 2011
外部発表はい

All Science Journal Classification (ASJC) codes

  • Oceanography

フィンガープリント 「Favorable conditions for cold-water intrusion from the Kuroshio intermediate layer into Osaka Bay」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル