Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries

Yuwei Zhao, Yue Lu, Huiping Li, Yongbin Zhu, You Meng, Na Li, Donghong Wang, Feng Jiang, Funian Mo, Changbai Long, Ying Guo, Xinliang Li, Zhaodong Huang, Qing Li, Johnny C. Ho, Jun Fan, Manling Sui, Furong Chen, Wenguang Zhu, Weishu LiuChunyi Zhi

研究成果: ジャーナルへの寄稿学術誌査読

14 被引用数 (Scopus)


The performances of rechargeable batteries are strongly affected by the operating environmental temperature. In particular, low temperatures (e.g., ≤0 °C) are detrimental to efficient cell cycling. To circumvent this issue, we propose a few-layer Bi2Se3 (a topological insulator) as cathode material for Zn metal batteries. When the few-layer Bi2Se3 is used in combination with an anti-freeze hydrogel electrolyte, the capacity delivered by the cell at −20 °C and 1 A g−1 is 1.3 larger than the capacity at 25 °C for the same specific current. Also, at 0 °C the Zn | |few-layer Bi2Se3 cell shows capacity retention of 94.6% after 2000 cycles at 1 A g−1. This behaviour is related to the fact that the Zn-ion uptake in the few-layer Bi2Se3 is higher at low temperatures, e.g., almost four Zn2+ at 25 °C and six Zn2+ at −20 °C. We demonstrate that the unusual performance improvements at low temperatures are only achievable with the few-layer Bi2Se3 rather than bulk Bi2Se3. We also show that the favourable low-temperature conductivity and ion diffusion capability of few-layer Bi2Se3 are linked with the presence of topological surface states and weaker lattice vibrations, respectively.

ジャーナルNature communications
出版ステータス出版済み - 12月 2022

!!!All Science Journal Classification (ASJC) codes

  • 化学 (全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 物理学および天文学(全般)


「Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。