抄録
A string s is said to be a gapped palindrome iff s = xyxRfor some strings x, y such that |x| ≥ 1, |y| ≥ 2, and xR denotes the reverse image of x.In this paper we consider two kinds of gapped palindromes, and present efficient online algorithms to compute these gapped palindromes occurring in a string.First, we show an online algorithm to find all maximal g-gapped palindromes with fixed gap length g ≥ 2 in a string of length n in O(n log σ) time and O(n) space, where σ is the alphabet size.Second, we show an online algorithm to find all maximal lengthconstrained gapped palindromes with arm length at least A ≥ 1 and gap length in range [gmin, gmax] in O (formula presented) time and O(n) space.We also show that if A is a constant, then there exists a string of length n which contains Ω(n(gmax− gmin)) maximal LCGPs, which implies we cannot hope for a significant speed-up in the worst case.
元の言語 | 英語 |
---|---|
ホスト出版物のタイトル | Combinatorial Algorithms - 27th International Workshop, IWOCA 2016, Proceedings |
編集者 | Veli Mäkinen, Simon J. Puglisi, Leena Salmela |
出版者 | Springer Verlag |
ページ | 191-202 |
ページ数 | 12 |
ISBN(印刷物) | 9783319445427 |
DOI | |
出版物ステータス | 出版済み - 1 1 2016 |
イベント | 27th International Workshop on Combinatorial Algorithms, IWOCA 2016 - Helsinki, フィンランド 継続期間: 8 17 2016 → 8 19 2016 |
出版物シリーズ
名前 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
巻 | 9843 LNCS |
ISSN(印刷物) | 0302-9743 |
ISSN(電子版) | 1611-3349 |
その他
その他 | 27th International Workshop on Combinatorial Algorithms, IWOCA 2016 |
---|---|
国 | フィンランド |
市 | Helsinki |
期間 | 8/17/16 → 8/19/16 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)
これを引用
Finding gapped palindromes online. / Fujishige, Yuta; Nakamura, Michitaro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.
Combinatorial Algorithms - 27th International Workshop, IWOCA 2016, Proceedings. 版 / Veli Mäkinen; Simon J. Puglisi; Leena Salmela. Springer Verlag, 2016. p. 191-202 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻 9843 LNCS).研究成果: 著書/レポートタイプへの貢献 › 会議での発言
}
TY - GEN
T1 - Finding gapped palindromes online
AU - Fujishige, Yuta
AU - Nakamura, Michitaro
AU - Inenaga, Shunsuke
AU - Bannai, Hideo
AU - Takeda, Masayuki
PY - 2016/1/1
Y1 - 2016/1/1
N2 - A string s is said to be a gapped palindrome iff s = xyxRfor some strings x, y such that |x| ≥ 1, |y| ≥ 2, and xR denotes the reverse image of x.In this paper we consider two kinds of gapped palindromes, and present efficient online algorithms to compute these gapped palindromes occurring in a string.First, we show an online algorithm to find all maximal g-gapped palindromes with fixed gap length g ≥ 2 in a string of length n in O(n log σ) time and O(n) space, where σ is the alphabet size.Second, we show an online algorithm to find all maximal lengthconstrained gapped palindromes with arm length at least A ≥ 1 and gap length in range [gmin, gmax] in O (formula presented) time and O(n) space.We also show that if A is a constant, then there exists a string of length n which contains Ω(n(gmax− gmin)) maximal LCGPs, which implies we cannot hope for a significant speed-up in the worst case.
AB - A string s is said to be a gapped palindrome iff s = xyxRfor some strings x, y such that |x| ≥ 1, |y| ≥ 2, and xR denotes the reverse image of x.In this paper we consider two kinds of gapped palindromes, and present efficient online algorithms to compute these gapped palindromes occurring in a string.First, we show an online algorithm to find all maximal g-gapped palindromes with fixed gap length g ≥ 2 in a string of length n in O(n log σ) time and O(n) space, where σ is the alphabet size.Second, we show an online algorithm to find all maximal lengthconstrained gapped palindromes with arm length at least A ≥ 1 and gap length in range [gmin, gmax] in O (formula presented) time and O(n) space.We also show that if A is a constant, then there exists a string of length n which contains Ω(n(gmax− gmin)) maximal LCGPs, which implies we cannot hope for a significant speed-up in the worst case.
UR - http://www.scopus.com/inward/record.url?scp=84984908030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984908030&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-44543-4_15
DO - 10.1007/978-3-319-44543-4_15
M3 - Conference contribution
AN - SCOPUS:84984908030
SN - 9783319445427
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 191
EP - 202
BT - Combinatorial Algorithms - 27th International Workshop, IWOCA 2016, Proceedings
A2 - Mäkinen, Veli
A2 - Puglisi, Simon J.
A2 - Salmela, Leena
PB - Springer Verlag
ER -