TY - JOUR
T1 - Finite speed of propagation in 1-D degenerate Keller-Segel system
AU - Sugiyama, Yoshie
PY - 2012/4
Y1 - 2012/4
N2 - We consider the following Keller-Segel system of degenerate type: (KS): ∂u/∂t = ∂/∂x (∂u m/∂x-u q-1∂v/∂x), x ∈ R{double-struck}, t > 0,0 = ∂ 2v/∂x 2-γν + u,x ∈ R{double-struck}, t > 0, u(x,0)=u 0 (x), x ∈ R{double-struck}, where m > 1, γ > 0, q ≥ 2m. We shall first construct a weak solution u(x, t) of (KS) such that u m - 1 is Lipschitz continuous and such that u m-1+δ for δ > 0 is of class C 1 with respect to the space variable x. As a by-product, we prove the property of finite speed of propagation of a weak solution u(x, t) of (KS), i.e., that a weak solution u(x, t) of (KS) has a compact support in x for all t > 0 if the initial data u 0(x) has a compact support in R{double-struck}. We also give both upper and lower bounds of the interface of the weak solution u of (KS).
AB - We consider the following Keller-Segel system of degenerate type: (KS): ∂u/∂t = ∂/∂x (∂u m/∂x-u q-1∂v/∂x), x ∈ R{double-struck}, t > 0,0 = ∂ 2v/∂x 2-γν + u,x ∈ R{double-struck}, t > 0, u(x,0)=u 0 (x), x ∈ R{double-struck}, where m > 1, γ > 0, q ≥ 2m. We shall first construct a weak solution u(x, t) of (KS) such that u m - 1 is Lipschitz continuous and such that u m-1+δ for δ > 0 is of class C 1 with respect to the space variable x. As a by-product, we prove the property of finite speed of propagation of a weak solution u(x, t) of (KS), i.e., that a weak solution u(x, t) of (KS) has a compact support in x for all t > 0 if the initial data u 0(x) has a compact support in R{double-struck}. We also give both upper and lower bounds of the interface of the weak solution u of (KS).
UR - http://www.scopus.com/inward/record.url?scp=84858689765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858689765&partnerID=8YFLogxK
U2 - 10.1002/mana.200810258
DO - 10.1002/mana.200810258
M3 - Article
AN - SCOPUS:84858689765
VL - 285
SP - 744
EP - 757
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
SN - 0025-584X
IS - 5-6
ER -