First Ionization Potentials of Fm, Md, No, and Lr: Verification of Filling-Up of 5f Electrons and Confirmation of the Actinide Series

Tetsuya K. Sato, Masato Asai, Anastasia Borschevsky, Randolf Beerwerth, Yusuke Kaneya, Hiroyuki Makii, Akina Mitsukai, Yuichiro Nagame, Akihiko Osa, Atsushi Toyoshima, Kazuaki Tsukada, Minoru Sakama, Shinsaku Takeda, Kazuhiro Ooe, Daisuke Sato, Yudai Shigekawa, Shin Ichi Ichikawa, Christoph E. Düllmann, Jessica Grund, Dennis RenischJens V. Kratz, Matthias Schädel, Ephraim Eliav, Uzi Kaldor, Stephan Fritzsche, Thierry Stora

研究成果: ジャーナルへの寄稿記事

8 引用 (Scopus)


We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clearly demonstrate that the 5f orbital is fully filled at No with the [Rn]5f147s2 configuration and that Lr has a weakly bound electron outside the No core. In analogy to the lanthanide series, the present results unequivocally verify that the actinide series ends with Lr.

ジャーナルJournal of the American Chemical Society
出版物ステータス出版済み - 11 7 2018


All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry