Flattening Process of Polymer Chains Irreversibly Adsorbed on a Solid

Mani Sen, Naisheng Jiang, Justin Cheung, Maya K. Endoh, Tadanori Koga, Daisuke Kawaguchi, Keiji Tanaka

    研究成果: Contribution to journalArticle査読

    47 被引用数 (Scopus)

    抄録

    We report the structural relaxation process of irreversibly adsorbed polymer chains via thermal annealing that lie flat on a solid ("flattened chains"). Amorphous polystyrene and quartz, which together constitute a weakly attractive system, was used as a model where the local chain conformations of the flattened chains were investigated by sum frequency generation spectroscopy (SFG). Two different film preparation processes (i.e., spin coating and dip coating methods) were utilized to create different initial chain conformations. The spin-coated and dip-coated PS thin films were annealed at a temperature far above the bulk glass transition temperature to reach the "quasiequilibrium" state and subsequently rinsed with chloroform to uncover the buried flattened chains. The SFG results revealed that the backbone chains (constituted of CH and CH2 groups) of the flattened PS chains preferentially orient to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized. We postulate that increasing the number of surface-segmental contacts (i.e., enthalpic gain) is the driving force for the flattening process of the polymer chains, even onto a weakly interactive solid to overcome the conformational entropy loss in the total free energy.

    本文言語英語
    ページ(範囲)504-508
    ページ数5
    ジャーナルACS Macro Letters
    5
    4
    DOI
    出版ステータス出版済み - 4 19 2016

    All Science Journal Classification (ASJC) codes

    • 有機化学
    • ポリマーおよびプラスチック
    • 無機化学
    • 材料化学

    フィンガープリント

    「Flattening Process of Polymer Chains Irreversibly Adsorbed on a Solid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル