Flow and nitric oxide increase hepatic function in co-culturing hepatocytes with hepatic stellate cells and endothelial cells

Tateki Sumii, Ryosuke Fujita, Kazuo Tanishita, Susumu Kudo

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

It is necessary to develop the way how researchers culture hepatocytes (HC) for showing high levels of hepatic functions in vitro, because functions of HC in vitro is only 2-hundredth part of the functions in vivo. Hepatic function increased when HC were cultured within endothelial cells (EC) and hepatic stellate cells (HSC). Nitric oxide (NO) also increased hepatic function. However no study has described the effects of media flow load on a co-culture model of HC, HSC and EC. Furthermore there was no research on NO in co-culture model. Therefore, we developed co-culture models that include three of these cell types, and assayed their hepatic functions under flow. We also measured the NO concentration in each models. All models under load of flow exhibited high hepatic function than in static culture. Under load of flow, HC+HSC model and HC+HSC+EC model showed the highest hepatic function. In almost models NO concentration exhibited the same tendency to increase along with hepatic function. We suggested co-culture and flow influenced hepatic function, and NO related to the improvement of hepatic function. Furthermore, we thought HSC caused other elements of the improvement.

本文言語英語
ホスト出版物のタイトル2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
出版社IEEE Computer Society
ページ20-23
ページ数4
ISBN(印刷版)9781457713613
DOI
出版ステータス出版済み - 1 1 2011
外部発表はい
イベント22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation - Nagoya, 日本
継続期間: 11 6 201111 9 2011

出版物シリーズ

名前2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"

その他

その他22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation
国/地域日本
CityNagoya
Period11/6/1111/9/11

All Science Journal Classification (ASJC) codes

  • 人工知能
  • 機械工学

フィンガープリント

「Flow and nitric oxide increase hepatic function in co-culturing hepatocytes with hepatic stellate cells and endothelial cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル