Formation flying along elliptical orbit using attractive sets of optimal control

Motoki Yamane, Mai Bando, Shinji Hokamoto

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

This paper proposes a new method of optimal trajectory design for formation flying along an elliptical orbit. Under linearized assumptions and a quadratic performance index, the optimal cost is quadratic in the initial state. Attractive sets of optimal control are defined as contours of the optimal cost based on linear quadratic regulator theory. It describes a set of all initial states to reach a desired state by a given cost. By solving the optimal control problem for TH equations, the optimal cost is obtained as a time-periodic function. This paper develops the attractive set for a time-periodic system and procedure to draw the attractive set is shown. The advantage of using attractive sets for optimal trajectory design is that it can determine the optimal initial state immediately. The various shape of the periodic orbit and the attractive sets are demonstrated by weight parameters of optimal control theory.

本文言語英語
ホスト出版物のタイトル68th International Astronautical Congress, IAC 2017
ホスト出版物のサブタイトルUnlocking Imagination, Fostering Innovation and Strengthening Security
出版社International Astronautical Federation, IAF
ページ7186-7194
ページ数9
ISBN(印刷版)9781510855373
出版ステータス出版済み - 1 1 2017
イベント68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017 - Adelaide, オーストラリア
継続期間: 9 25 20179 29 2017

出版物シリーズ

名前Proceedings of the International Astronautical Congress, IAC
11
ISSN(印刷版)0074-1795

その他

その他68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017
国/地域オーストラリア
CityAdelaide
Period9/25/179/29/17

All Science Journal Classification (ASJC) codes

  • 航空宇宙工学
  • 天文学と天体物理学
  • 宇宙惑星科学

フィンガープリント

「Formation flying along elliptical orbit using attractive sets of optimal control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル