TY - GEN
T1 - Fourier analysis of the fitness landscape for evolutionary search acceleration
AU - Pei, Yan
AU - Takagi, Hideyuki
PY - 2012
Y1 - 2012
N2 - We propose an approach for approximating a fitness landscape by filtering its frequency components in order to accelerate evolutionary computation (EC) and evaluate the performance of the technique. In addition to the EC individuals, the entire fitness landscape is resampled uniformly. The frequency information for the fitness landscape can then be obtained by applying the discrete Fourier transform (DFT) to the resampled data. Next, we filter to isolate just the major frequency component; thus we obtain a trigonometric function approximating the original fitness landscape after the inverse DFT is applied. The elite is obtained from the approximated function and the EC search accelerated by replacing the worst EC individual with the elite. We use benchmark functions to evaluate some variations of our proposed approach. These variations include the combination of resampling of the global area, local area, in all n-D at once, and in each of n 1-D. The experimental results show that our proposed method is efficient in accelerating most of the benchmark functions.
AB - We propose an approach for approximating a fitness landscape by filtering its frequency components in order to accelerate evolutionary computation (EC) and evaluate the performance of the technique. In addition to the EC individuals, the entire fitness landscape is resampled uniformly. The frequency information for the fitness landscape can then be obtained by applying the discrete Fourier transform (DFT) to the resampled data. Next, we filter to isolate just the major frequency component; thus we obtain a trigonometric function approximating the original fitness landscape after the inverse DFT is applied. The elite is obtained from the approximated function and the EC search accelerated by replacing the worst EC individual with the elite. We use benchmark functions to evaluate some variations of our proposed approach. These variations include the combination of resampling of the global area, local area, in all n-D at once, and in each of n 1-D. The experimental results show that our proposed method is efficient in accelerating most of the benchmark functions.
UR - http://www.scopus.com/inward/record.url?scp=84866876786&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866876786&partnerID=8YFLogxK
U2 - 10.1109/CEC.2012.6252924
DO - 10.1109/CEC.2012.6252924
M3 - Conference contribution
AN - SCOPUS:84866876786
SN - 9781467315098
T3 - 2012 IEEE Congress on Evolutionary Computation, CEC 2012
BT - 2012 IEEE Congress on Evolutionary Computation, CEC 2012
T2 - 2012 IEEE Congress on Evolutionary Computation, CEC 2012
Y2 - 10 June 2012 through 15 June 2012
ER -