Front instability and pattern dynamics in the phase-field model for crystal growth

Hidetsugu Sakaguchi, Seiji Tokunaga

    研究成果: ジャーナルへの寄稿学術誌査読

    3 被引用数 (Scopus)

    抄録

    We study front instability and the pattern dynamics in the phase-field model with four-fold rotational symmetry. When the undercooling Δ is 1<Δ<Δc, the flat interface is linearly unstable, and the deformation of the interface evolves to spatio-temporal chaos or nearly stationary cellular structures appear, depending on the growth direction. When Δ<1, the flat interface grows with a power law x∼t1/2 and the growth rates of linear perturbations with finite wave number q decay to negative values. It implies that the flat interface is linearly stable as t→∞, if the width of the interface is finite. However, the perturbations around the flat interface actually grow since the linear growth rates take positive values for a long time, and the flat interface changes into an array of doublons or dendrites. The competitive dynamics among many dendrites is studied more in detail.

    本文言語英語
    ページ(範囲)222-232
    ページ数11
    ジャーナルPhysica D: Nonlinear Phenomena
    205
    1-4
    DOI
    出版ステータス出版済み - 6月 1 2005

    !!!All Science Journal Classification (ASJC) codes

    • 統計物理学および非線形物理学
    • 数理物理学
    • 凝縮系物理学
    • 応用数学

    フィンガープリント

    「Front instability and pattern dynamics in the phase-field model for crystal growth」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル