Function regression for image restoration by fuzzy hough transform

Koichiro Kubq, Kiichi Urahama

研究成果: Contribution to journalArticle査読

抄録

A function approximation scheme for image restoration is presented to resolve conflicting demands for smoothing within each object and differentiation between objects. Images are defined by probability distributions in the augmented functional space composed of image values and image planes. According to the fuzzy Hough transform, the probability distribution is assumed to take a robust form and its local maxima are extracted to yield restored images. This statistical scheme is implemented by a feedforward neural network composed of radial basis function neurons and a local winner-takes-all subnetwork.

本文言語英語
ページ(範囲)1305-1309
ページ数5
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E81-A
6
出版ステータス出版済み - 1998

All Science Journal Classification (ASJC) codes

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Function regression for image restoration by fuzzy hough transform」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル