TY - JOUR
T1 - Functional characterization of archaeal homologs of human nuclear RNase P proteins Rpp21 and Rpp29 provides insights into the molecular basis of their cooperativity in catalysis
AU - Jiang, Dan
AU - Izumi, Kenta
AU - Ueda, Toshifumi
AU - Oshima, Kosuke
AU - Nakashima, Takashi
AU - Kimura, Makoto
N1 - Funding Information:
This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. 15H04487 to M.K.).
Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the processing of 5′ leader sequences of precursor tRNAs (pre-tRNA). RNase P proteins PhoRpp21 and PhoRpp29 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologs of human nuclear RNase P proteins Rpp21 and Rpp29 respectively, fold into a heterodimeric structure and synergistically function in the activation of the specificity domain (S-domain) in RNase P RNA (PhopRNA). To elucidate the molecular basis for their cooperativity, we first analyzed binding ability to PhopRNA using a pull-down assay. The result showed that PhoRpp21 is able to bind to PhopRNA in the absence of PhoRpp29, whereas PhoRpp29 alone has reduced affinity to PhopRNA, suggesting that PhoRpp21 primarily functions as a binding element for PhopRNA in the PhoRpp21-PhoRpp29 complex. Mutational analyses suggested that although individual positively charged clusters contribute little to the PhopRNA binding, Lys53, Lys54, and Lys56 at the N-terminal helix (α2) in PhoRpp21 and 10 C-terminal residues in PhoRpp29 are essential for PhopRNA activation. Moreover, deletion of a single stranded loop linking P11 and P12 helices in the PhopRNA S-domain impaired the PhoRpp21-PhoRpp29 complex binding to PhopRNA. Collectively, the present results suggest that PhoRpp21 binds the loop between P11 and P12 helices through overall positively charged clusters on the surface of the complex and serves as a scaffold for PhoRpp29 to optimize structural conformation of its N-terminal helix (α2) in PhoRpp21, as well as C-terminal residues in PhoRpp29, for RNase P activity.
AB - Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the processing of 5′ leader sequences of precursor tRNAs (pre-tRNA). RNase P proteins PhoRpp21 and PhoRpp29 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologs of human nuclear RNase P proteins Rpp21 and Rpp29 respectively, fold into a heterodimeric structure and synergistically function in the activation of the specificity domain (S-domain) in RNase P RNA (PhopRNA). To elucidate the molecular basis for their cooperativity, we first analyzed binding ability to PhopRNA using a pull-down assay. The result showed that PhoRpp21 is able to bind to PhopRNA in the absence of PhoRpp29, whereas PhoRpp29 alone has reduced affinity to PhopRNA, suggesting that PhoRpp21 primarily functions as a binding element for PhopRNA in the PhoRpp21-PhoRpp29 complex. Mutational analyses suggested that although individual positively charged clusters contribute little to the PhopRNA binding, Lys53, Lys54, and Lys56 at the N-terminal helix (α2) in PhoRpp21 and 10 C-terminal residues in PhoRpp29 are essential for PhopRNA activation. Moreover, deletion of a single stranded loop linking P11 and P12 helices in the PhopRNA S-domain impaired the PhoRpp21-PhoRpp29 complex binding to PhopRNA. Collectively, the present results suggest that PhoRpp21 binds the loop between P11 and P12 helices through overall positively charged clusters on the surface of the complex and serves as a scaffold for PhoRpp29 to optimize structural conformation of its N-terminal helix (α2) in PhoRpp21, as well as C-terminal residues in PhoRpp29, for RNase P activity.
UR - http://www.scopus.com/inward/record.url?scp=85006085718&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006085718&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2016.10.142
DO - 10.1016/j.bbrc.2016.10.142
M3 - Article
C2 - 27810361
AN - SCOPUS:85006085718
SN - 0006-291X
VL - 482
SP - 68
EP - 74
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 1
ER -