Functional integral approach to semi-relativistic Pauli-Fierz models

研究成果: Contribution to journalArticle査読

10 被引用数 (Scopus)

抄録

By means of functional integrations spectral properties of semi-relativistic Pauli-Fierz HamiltoniansH=(p-αA)2+m2-m+V+Hrad in quantum electrodynamics are considered. Here p is the momentum operator, A a quantized radiation field on which an ultraviolet cutoff is imposed, V an external potential, Hrad the free field Hamiltonian and m ≥ 0 describes the mass of electron. Two self-adjoint extensions of a semi-relativistic Pauli-Fierz Hamiltonian are defined. The Feynman-Kac type formula of e -t H is given. A self-adjointness, a spatial decay of bound states, a Gaussian domination of the ground state and the existence of a measure associated with the ground state are shown. All the results are independent of values of coupling constant α, and it is emphasized that m = 0 is included.

本文言語英語
ページ(範囲)784-840
ページ数57
ジャーナルAdvances in Mathematics
259
DOI
出版ステータス出版済み - 7 10 2014

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Functional integral approach to semi-relativistic Pauli-Fierz models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル