Ganea's conjecture on Lusternik-Schnirelmann category

研究成果: ジャーナルへの寄稿記事

36 引用 (Scopus)

抄録

A series of complexes Qp indexed by all primes p is constructed with cat Qp = 2 and cat Qp × Sn = 2 for either n ≥ 2 or n = 1 and p = 2. This disproves Ganea's conjecture on Lusternik-Schnirelmann (LS) category.

元の言語英語
ページ(範囲)623-634
ページ数12
ジャーナルBulletin of the London Mathematical Society
30
発行部数6
DOI
出版物ステータス出版済み - 11 1998

Fingerprint

Lusternik-Schnirelmann Category
Disprove
Series

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

これを引用

Ganea's conjecture on Lusternik-Schnirelmann category. / Iwase, Norio.

:: Bulletin of the London Mathematical Society, 巻 30, 番号 6, 11.1998, p. 623-634.

研究成果: ジャーナルへの寄稿記事

@article{ecf3f6fa52fa4f469974363c8bfa2766,
title = "Ganea's conjecture on Lusternik-Schnirelmann category",
abstract = "A series of complexes Qp indexed by all primes p is constructed with cat Qp = 2 and cat Qp × Sn = 2 for either n ≥ 2 or n = 1 and p = 2. This disproves Ganea's conjecture on Lusternik-Schnirelmann (LS) category.",
author = "Norio Iwase",
year = "1998",
month = "11",
doi = "10.1112/S0024609398004548",
language = "English",
volume = "30",
pages = "623--634",
journal = "Bulletin of the London Mathematical Society",
issn = "0024-6093",
publisher = "Oxford University Press",
number = "6",

}

TY - JOUR

T1 - Ganea's conjecture on Lusternik-Schnirelmann category

AU - Iwase, Norio

PY - 1998/11

Y1 - 1998/11

N2 - A series of complexes Qp indexed by all primes p is constructed with cat Qp = 2 and cat Qp × Sn = 2 for either n ≥ 2 or n = 1 and p = 2. This disproves Ganea's conjecture on Lusternik-Schnirelmann (LS) category.

AB - A series of complexes Qp indexed by all primes p is constructed with cat Qp = 2 and cat Qp × Sn = 2 for either n ≥ 2 or n = 1 and p = 2. This disproves Ganea's conjecture on Lusternik-Schnirelmann (LS) category.

UR - http://www.scopus.com/inward/record.url?scp=0032215223&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032215223&partnerID=8YFLogxK

U2 - 10.1112/S0024609398004548

DO - 10.1112/S0024609398004548

M3 - Article

AN - SCOPUS:0032215223

VL - 30

SP - 623

EP - 634

JO - Bulletin of the London Mathematical Society

JF - Bulletin of the London Mathematical Society

SN - 0024-6093

IS - 6

ER -