GBoost: A mathematical programming approach to graph classification and regression

Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, Koji Tsuda

研究成果: Contribution to journalArticle査読

87 被引用数 (Scopus)

抄録

Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

本文言語英語
ページ(範囲)69-89
ページ数21
ジャーナルMachine Learning
75
1
DOI
出版ステータス出版済み - 4 1 2009
外部発表はい

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 人工知能

フィンガープリント

「GBoost: A mathematical programming approach to graph classification and regression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル