Gene network inference and visualization tools for biologists: Application to new human transcriptome datasets

Daniel Hurley, Hiromitsu Araki, Yoshinori Tamada, Ben Dunmore, Deborah Sanders, Sally Humphreys, Muna Affara, Seiya Imoto, Kaori Yasuda, Yuki Tomiyasu, Kosuke Tashiro, Christopher Savoie, Vicky Cho, Stephen Smith, Satoru Kuhara, Satoru Miyano, D. Stephen Charnock-Jones, Edmund J. Crampin, Cristin G. Print

研究成果: Contribution to journalArticle査読

46 被引用数 (Scopus)

抄録

Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions.

本文言語英語
ページ(範囲)2377-2398
ページ数22
ジャーナルNucleic acids research
40
6
DOI
出版ステータス出版済み - 3 2012

All Science Journal Classification (ASJC) codes

  • 遺伝学

フィンガープリント

「Gene network inference and visualization tools for biologists: Application to new human transcriptome datasets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル